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ABSTRACT 
A numerical method is developed for steady and unsteady turbulent flows with significant regions of 
separation. A finite element formulation of the Navier-Stokes equations with a modified Baldwin-Lomax 
eddy viscosity closure is used. The method of averaging is employed to obtain a periodic solution of 
unsteady flow. The formulation is tested on a problem of flow over a backward-facing step and the results 
are compared with experimental and other numerical results. The gross features of both steady and unsteady 
flows are reasonably well predicted by the numerical analysis, at least for the limited range of parameters 
tested so far. 
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INTRODUCTION 
Turbulent flow separation has received a great deal of attention because of its practical 
importance. It may be present in many practical machines and devices, thus reducing their 
performance; nevertheless, it is still far from well understood. Simpson1 has presented a detailed 
discussion of experimental and computational work on two-dimensional turbulent separated 
flows, which was followed more recently by an updated review2. There appears to be no generally 
accepted method to calculate such flows, especially for the unsteady case. 

Although the flow over a backward-facing step is one of the simplest separated-reattaching 
flows, the flow field is still very complex. It includes all the significant features of the general 
problem and hence it is one of the standard test cases of complex turbulent flows3. As a 
consequence, numerous studies of this basic flow have been conducted for the steady case. 
Experimental investigations have been performed by a number of researchers for different flow 
conditions4,5 and the k-ε turbulence model has been widely used for numerical prediction6-8. 

Relatively little effort, however, has been devoted to unsteady turbulent flow over a 
backward-facing step. Two experimental studies show that this type of separated flow has very 
complex flow characteristics. Brocher9 reported that Lebouché and Martin pulsed the mean 
velocity of the flow in a duct which had enlargements on both sides and thus produced 
symmetrical separated regions. The amplitude of the pulsation was up to 30% of the mean 
velocity and the frequency F ranged from 3 to 23 Hz. The gross flow characteristics were 
dependent on a reduced frequency parameter F* = where h is the step height. It was 
reported that for high pulsation rates, there existed a critical frequency F*C 0.07 such that (a) 
if F*<F*c, the recirculation vortex was shed, (b) if F* F*c, the vortex was very unstable and 
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(c) if F*>F*c, the vortex was stable but was smaller than for steady flow. Mullin et al.10 made 
a systematic experimental study of a pulsating flow over a step where F* = 0.007 and =0.12 
for a 1 Hz sinusoidal velocity oscillation. It was observed that the stability of the separated flow 
region behind the step was strongly perturbed by the free-stream oscillations and that the position 
of reattachment was dependent on the phase of the free-stream velocity. Shedding of the 
recirculation vortex was reported to take place. Unfortunately, no Reynolds shear stress or other 
flow structure measurements were made to lead to a conclusive explanation of the shedding 
process. 

In the present work, an attempt is made to develop a capability to model unsteady turbulent 
separated flows with the simplest possible representation. A finite element representation of the 
Navier-Stokes equations with an algebraic closure model for eddy viscosity is adopted. The 
Baldwin-Lomax eddy viscosity model is appropriately modified for these challenging cases. The 
method of averaging is applied to obtain a periodic solution and thereby avoid costly numerical 
integration in time. The method is applied to the example of flow over a backward-facing step. 
Numerical predictions for the steady case are in good agreement with experimental data, and 
preliminary results for unsteady flow reproduce the main features of the experimental observations 
and show that the present method has considerable potential. As far as the authors are aware, 
this is the first reported investigation of applying these techniques to unsteady separated turbulent 
flow. 

THEORETICAL FORMULATION 
The Reynolds averaged momentum and continuity equations for two-dimensional incompressible 
turbulent flow are given by: 

P(u,t + uu,x + uu,y) =_P,X + 2(μeu ,x) ,x + [μe(v,x + u,y)],y 

P(v,t + uv,x+vv,y= -p,y+2(μeV,y),y+[μe(V,x+ U,y)],x (1) 
u ,x+ v,y=0 

where x,y are the coordinates and u,v are the ensemble-averaged velocity components in x,y, 
respectively, t is the time, p is the fluid density, p is the pressure, μe is the effective viscosity 
made up of the molecular viscosity μ and the eddy viscosity μt. 

The linear unsteady velocity terms in (1) must be included in unsteady flow calculations. Since 
usually calculations must proceed in time as well as in two spatial dimensions, care is needed to 
avoid numerical instability and to minimize computation time, especially when flow reversal 
occurs. 

The present work uses curved isoparametric finite elements with bi-quadratic interpolation 
for velocities and bi-linear for pressure. The velocities and pressure are represented by: 

where Nj Mj are the shape functions, and μj vj and pj are the time-dependent nodal variables. 
Upwinding is essential to obtain converged solutions for the high Reynolds numbers 

encountered in this study. The streamline upwind technique previously developed for linear 
elements11 and extended to quadratic elements12 is used to stabilize the calculations at high 
Reynolds numbers. Instead of the common Galerkin method in which weighting and interpolation 
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functions are from the same class of functions, the streamline upwind/Petrov-Galerkin 
formulations are constructed by using the upwind weighting function: 

Wi=Ni+ (uNi,x+vNi,y)/||Μ||2 i = 1,2,....,8 (3) 
where is the upwind parameter12 and ||Μ||2 = U2 + V2. In the present work, only partial 
upwinding12 is employed. That is, the upwind modification in the weighting function (3) is only 
applied to the convective and transient terms. By substituting the interpolation functions (2) 
into (1), employing the method of weighted residuals with the weighting function (3), and 
integrating the diffusive terms by parts once, the upwind finite element equations are obtained as: 

Md + Kd + δ = 0 (4) 
where M is the mass matrix, K is the stiffness matrix, 5 contains the non-linear terms due to 
the convection terms in (1), and d is the nodal vector of unknowns. Details of all matrices are 
given in the Appendix. 

The direct time integration solution of the resulting finite element equation (4) is time 
consuming and expensive. Because periodic flow is by far the most common time-dependent 
motion, in the present study, the need for the numerical integration in time is eliminated by 
assuming the solution to be periodic and applying the method of averaging. We assume that 
the nodal vector of unknowns d takes the periodic form. 

d+A + B cos(Ωt) + C sin(Ωt) (5) 

where A, B and C are constant vectors, and Ω is the oscillating frequency. In (5), the nodal 
vector is composed of a mean component A and a periodic component with in-phase and 
out-of-phase amplitudes B and C, respectively. Thus, 

d = - B Ω sin(Ωt)+CΩ cos(Ωt) (6) 
To obtain the three sets of equations for the three sets of unknowns A, B and C, (5) and (6) 

are first substituted into the finite element equation (4), then the resulting equations are: (1) 
averaged over the period 2π/Ω; (2) multiplied by cos(Ωt) and averaged over the period 2π/Ωl; 
(3) multiplied by sin(Ωt) and averaged over the period 2π/Ω. Through this process, a set of 
non-linear algebraic equations for A, B and C is obtained: 

where δA, δB and δc are given in the Appendix. These equations are solved using the 
Newton-Raphson procedure. 

The use of (5) implies that the periodic motion can be approximated by a steady term and 
the first harmonic. This should be a good approximation for those cases where the oscillating 
component is small with respect to the steady one. This idea is supported by experimental 
evidence18, where it was observed that the time variation of the downstream flow was similar 
to that at the inlet. 

TURBULENCE MODEL 
One of the main difficulties in solving the turbulent Navier-Stokes equations (1) is to describe 
the eddy viscosity μt reasonably. It is now possible to apply a variety of complex turbulence 
models to simulate turbulent flows as a result of increases in computer capability. Algebraic 
eddy viscosity models, however, are still very popular for engineering calculations, since their 
implementation results in minimum requirements of computer time and storage. The 
Baldwin-Lomax algebraic eddy viscosity model has found wide application in the prediction of 
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steady turbulent flows13-15. The present authors have tested this model and found that it is well 
behaved for attached flows16 and with appropriate modifications, it can represent separated 
flows as well12. 

Steady flow calculation models and methods have been extended to unsteady turbulent 
flow17-19. A number of investigators have argued that, as long as the period of the organized 
unsteadiness is relatively long compared with the turbulence timescales, it should be acceptable 
to use the approximation that the turbulent structure is unaffected by the unsteadiness2. Some 
experimental investigations have shown that unsteadiness does not alter the turbulence structure 
much from that for steady flows, except perhaps in large amplitude oscillation cases1. For 
moderate amplitude oscillations (velocity amplitude/mean velocity < 0.37), Cousteix et al.18 have 
shown that the turbulent shear stress is independent of phase angle and has values corresponding 
to steady turbulent flows. All moderate amplitude measurements indicate that outside of the 
near-wall region the turbulence structure is basically unaffected by organized unsteadiness. 

Many numerical predictions of unsteady turbulent flows have indicated that the turbulent 
closures developed for steady flows are still valid for unsteady flows17-19. Cebeci20 concurred 
that the ability of a turbulence model to simulate unsteady flows can be gauged by its ability 
to simulate steady flows. Unsteadiness relieves none of the numerical and turbulence model 
difficulties encountered with steady free-stream separation. As mentioned above, the Baldwin-
Lomax eddy viscosity model works well for steady flow, especially, the modified version which 
has the capability to simulate separated flows. A recent calculation of turbulent oscillating 
channel flows yielded satisfactory results by using the Baldwin-Lomax model21. The present 
test case, turbulent flow over a backward-facing step, is a challenging one for the Baldwin-Lomax 
model. Because a large separation zone exists, it is difficult to determine the length scale in the 
original outer formulation and to simulate the backflow region12,15. The modifications made 
previously12 appear to be very important. A brief summary of the modified Baldwin-Lomax 
model follows. Further details are available in Reference 12. 

The modified Baldwin-Lomax model provides an algebraic representation of the eddy viscosity 
as a function of y, the coordinate normal to a wall. It is subdivided into three functions, namely 
an inner one close to the wall, an outer one in the outer flow and an algebraic model for back 
flow in order to approximate the distinctly different mixing phenomenon taking place in the 
respective regions. In the inner region, the eddy viscosity is given by: 

(μt)inner = P(kyD)2/ω/ (8) 
where p is the density, /ω/ is the magnitude of the vorticity, k=0.4, the von Karman constant, 
y is the normal distance from the wall, D is the Van Driest damping factor, which is given by: 

where t*W is the larger of the magnitude of the wall shear stress and the maximum shear stress 
at a given streamwise location, and μ is the molecular viscosity. In the outer region, the eddy 
viscosity is given by: 

(ft) outer 

(10) 
where K=0.0168 is the Clauser constant, Ccp is an additional constant which is taken as 1.2, and 

Fwake = Y*max Fmax (11) 

F w a k e = Y * m a x F m a x 

The quantities Y*max and Fmax are determined from the outer function: 
F(y*)=y*\ω\D (12) 

where y*=y for attached flow, and y*=y—yb for separated flow, where yb is the distance from 
the backflow edge (where the tangential velocity u t=0) to the wall. Fmax is the maximum value 
of F(y*) that occurs in a profile and Y*max is the value of y* at which Fmax occurs. In (10), the 
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function Fkleb is the Klebanoff intermittency factor given by: 

Fkleb=[1 + 5.5(Ckleby*/y*max)6]-1 (13) 
where Ckleb is an empirical constant which is taken as 0.54. In the backflow region, the eddy 
viscosity is calculated by using the Goldberg backflow model22 which is too involved to reproduce 
here. The theory of the model and its application to separated turbulent flows have been given 
elsewhere15,22. The turbulent eddy viscosity is switched, for an attached profile, from the inner 
to the outer formulation at the location where the values from (8) and (10) are equal; for a 
separated profile, from the backflow to the outer formulation at the location where y=yb. 

METHOD OF SOLUTION 
The finite element method and the modified turbulence model are combined in a new program. 
The resulting non-linear equations are solved using the Newton-Raphson method. The effective 
viscosity μe is kept constant when the Newton-Raphson iterations are performed since its 
dependence on the velocity is too complicated to include. Hence μe is only updated at specified 
times in the calculations. The relaxation technique12 is employed to calculate the eddy viscosity 
and to speed up the solution convergence. A uniform eddy viscosity field is first established from 
an appropriate laminar solution. Then several Newton-Raphson iterations are performed on 
the velocity-pressure variables with eddy viscosity held constant. Once the velocity-pressure 
field has converged, the turbulence model is invoked and the viscosity distribution is updated 
by the relaxation formulation12. Then the velocity-pressure calculations are repeated with the 
new eddy viscosity distribution. The process is continued until the viscosity has converged as 
well. This process is controlled by specified accuracy tolerance levels which are progressively 
reduced as the solution approaches the final required results. The procedure of calculation has 
been shown to be very efficient compared to the usual method of proceeding from low to high 
Reynolds numbers step by step. 

In the present work, all matrices are evaluated by 3 x 3 Gauss numerical integration, and all 
the calculations for the turbulent viscosity are carried out at the Gauss points. Because the eddy 
viscosity is affected only by velocity gradients and not by velocity oscillations, for simplification, 
the vorticity and the wall shear stress in the Baldwin-Lomax formula are calculated only from 
the distribution of the mean component of velocity (i.e. part A in (5)). Similarly, the upwind 
modification terms in the weighting function (3) are calculated based on the mean component 
of velocity as well. The computer program is implemented in double precision on a new super 
computer system with vector facility, namely an IBM model 3090. The solution of the linear 
algebraic equations and the matrix inversions are performed using a sparse matrix solving package 
called SPARSPAK. 

Once the above solution process has finished, subsequent calculations are performed to obtain 
instantaneous streamline plots and reattachment lengths Xr. That is, for particular values of 
the phase angle Φ over one cycle of basic motion, the instantaneous velocity field is calculated 
from (5). A finite element program23 is used to solve for the stream function from the known 
vorticity distribution. At the same time, the reattachment point is determined by calculating the 
shear stress on the wall and finding the first point downstream of the step where it vanishes. The 
minimum and maximum values of Xr as a function of Φ are then easily determined. 

NUMERICAL RESULTS AND DISCUSSION 
Steady flow 

The flow problem under consideration and the finite element grid used are shown in Figures 1 
and 2, respectively. The aspect ratio of the backward-facing step height h to the overall 
cross-sectional width is 1:3. For the present calculations, the following boundary conditions 
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have been adopted: 
u=0,y h, 

Upstream: u = uo,y>h, v=0 
Downstream: p=0, v=0 
At the wall: u=0, v=0 
At the symmetry line: T = 0 , V=0 

where u0 is the free-stream velocity. At the upstream boundary, the u velocity increases from 
zero to u0 linearly over one element. Other versions of this boundary condition were also tried 
such as using a fully developed turbulent profile but it was found that the overall solution and, 
in particular, the reattachment length were hardly affected by such changes. Hence, the simpler 
boundary condition was used for most of the results reported here. 

Considering the boundary condition on the top boundary, solutions have been presented in 
the literature for two different versions, namely, a zero-slip wall and a frictionless symmetry line. 
In the present work, we have chosen the latter mainly for computational ease since this case 
has no boundary layer to be modelled there. This boundary condition does affect the recirculation 
flow and the reattachment length, but since the present work was mainly of an exploratory 
nature, this was not considered important. 

The detailed dimensions for the finite element grid are given in Table 1. The various element 
dimensions were calculated by geometric progression as indicated. Grid dependency was checked 
by calculations on a coarser mesh, the results from which compared favourably with those from 
the finer grid. Further, the results obtained for the steady case with the present grid apparently 
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Table 1 Details of finite element grid (shown in Figure 2) 

Number of elements Element dimensions 

X 

18 

y 

15 

∆xmin 

0.0945 h 

∆xi/∆xi-1 

1.232 

∆ymin 

0.063 h 

∆y i /∆y i - t* 

1.482 

∆yi/∆yi-1** 

1.495 

*y<h from y = 0+ 4 elements, from y = h- 4 elements. 
**y>h from y=h+ 7 elements. 

compared reasonably well with other numerical predictions and, therefore, it was felt that the 
grid was adequate for the present purpose which was mainly to explore the potential of the 
proposed method for the unsteady problem. 

Computations were performed for two Reynolds numbers, namely, 52000 and 69160, based 
on the free-stream velocity u0 and the step height h. The latter represents the same flow condition 
as in Sohn6 and Kim et al.4. As in the experimental case4, the effect of change in Reynolds 
number over a limited range was found to be negligible. Hence, only the results for Re=69160 
are presented here. 

Figure 3 shows the streamline contours obtained from this calculation. The most important 
parameter for comparison with the experimental data of Kim et al.4 is the reattachment length 
Xr of the separation zone behind the step. The accepted experimental measurement of Xr is 
7.0±1.0h. The predicted value in the present study is about 6.7 h. Sohn6 predicted Xr as 5.59 h 
using a k-ε model and the finite element method with the BTD-type streamline upwinding. The 
fact that the present result is larger than Sohn's is consistent with the different top boundary 
condition. 

In Figure 4, the predicted velocity profiles are compared with the experimental measurements 
and the computed results of Sohn. The predictions agreed reasonably well with the experimental 
data except very near the wall. Both predictions show a slower recovery downstream of the 
reattachment point, but this is common to most other computations as well6,7. 

Figure 5 shows a comparison of the computed pressure coefficient Cp on the wall with the 
experimental data. The pressure distribution reproduces fairly well the trends of the experimental 
measurement and is comparable to the prediction of Reference 6. Hence, it seems fair to conclude 
that the results from the present model compare favourably with experimental and other 
numerical ones for the steady case. 
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Unsteady flow 
The computation of an oscillating turbulent flow over the backward-facing step, where the 

free-stream velocity has been perturbed by a sinusoidal fluctuation is now considered. The 
amplitude of the oscillation was taken to be 12% of the mean velocity, and the frequency of 
the oscillation was varied from 0.5 to 12 Hz to investigate the effects of the unsteadiness on the 
general behaviour of the separated flow and the turbulence structure. 

The expansion ratio of the channel was chosen to be 1:6.3 in order to compare with the 
experimental measurements10. The free-stream velocity was taken as: 

U0= sin(2πF)t (14) 
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where the mean velocity =1.43 m/sec, the amplitude of the oscillating component 
=0.172 m/sec and the frequency F=0.5 12 Hz. 

The unsteady calculations were carried out for the three different finite element grids shown 
in Figure 6. Grid I was introduced to check the effect of inlet conditions by modelling the region 
upstream of the step by 3 h, and thereby moving the boundary condition upstream. This grid 
was relatively coarse with only 181 elements in total. Grid II with 234 elements is essentially 
the same as the one used for the steady problem suitably modified for the different aspect ratio 
of the step to channel size. Grid HI has the same number of elements as Grid II, but the 
x-dimension of the elements in the backflow region has been taken as uniform. This grid was 
introduced to check on the sensitivity of the results in this region to grid spacing. 

Some exploratory unsteady calculations were performed using Grid I with and without the 
upstream portion of the grid included. It was found that including the upstream portion of the 
grid had very little effect on the solution downstream of the step. Hence, thereafter this upstream 
portion was ignored and only results from Grids II and III are reported herein. The results from 
Grids II and III were essentially the same for low frequencies (F 6). However, it is worth noting 
that the calculations on Grid III were the most stable and led to the highest attainable frequency. 
In particular, Grid II failed to yield converged results above F=6. Finally, we note that it would 
have been desirable to use a finer grid to check on grid dependency but this was not possible 
with the present computer capacity and financial resource limitations. 

To test the new periodic solution program, steady flow (F=0) was calculated first using 
Grid II. The computed velocity profiles and the normalized pressure distributions on the wall 
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were all found to be very similar to those from the previous example. The computed reattachment 
length, Xr=6.3 h, was slightly smaller than from the previous example, because the reattachment 
length is dependent on the step expansion ratio1. Figure 7 shows the streamline contours from 
this calculation, which are clearly very similar to those of Figure 3. 

The first unsteady calculations were carried out at the low frequency of F= 1 Hz, since the 
main experimental results correspond to this case. Some typical results obtained from Grid II 
are shown in Figures 8 to 77. 

The streamline contours for the mean flow and the instantaneous flows at 0, 1/4, 1/2 and 3/4 
cycle points through 1 cycle of oscillation (phase angles =0, 90°, 180°, 270°) are shown in 
Figure 8. It is seen that the reattachment point oscillates about the mean position by about 10% 
(not exactly symmetrically). This is consistent with the experimental observations10, which 
unfortunately were only qualitative. The computed streamline contours showed no evidence of 
vortex shedding, whereas the experimenters did report vortex shedding at this frequency but 
again only in a qualitative manner. Perhaps the finite element grid was too coarse to capture 
the low strength vortex shedding expected at this low frequency, because the computed results 
did yield what we interpreted as vortex shedding at higher frequencies. 

Figure 9 shows the computed velocity profiles at various streamwise locations x=0.5, 1.5, 3, 
4.5 and 5.5 h and phase angles, 0°, 90°, 180° and 270° for the frequency F= 1. The corresponding 
experimental results are reproduced in Figure 10. It may be seen that whereas the computed 
results exhibit smooth changes with both changes in location and phase, the experimental ones 
show rather discontinuous ones. For example, the experimental profiles at locations 3 and 4.5 h 
exhibit almost completely opposite changes with phase. Perhaps these changes were associated 
with vortex shedding, but there is no explanation given in Reference 10. 

The computed pressure distributions on the wall are shown in Figure 11 for various phase 
angles over one cycle of oscillation. Again, some significant variation is seen to occur over the 
cycle. Unfortunately, the corresponding experimental results were not available for comparison. 

A final observation is that at low frequencies (F<4) the computed mean velocity profiles and 
the mean wall pressure distribution in the oscillating flow were indistinguishable from those in 
the steady flow. Further, the reattachment length corresponding to the mean velocity was almost 
the same as that for steady flow. 

As the frequency was increased further, the velocity profiles and the pressure distributions 
were more significantly perturbed and the calculations were less stable. A larger variation in 
the position of rearrachment was observed and the mean reattachment length became shorter. 
For illustration, Figures 12, 13 and 14 show the velocity profiles, pressure coefficient on the wall 
and the streamline contours, respectively, for a frequency of F=5 which corresponds to 
F* = 0.035. 
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When the frequency was further increased, the calculations became more unstable and, in 
fact, Grid II failed to yield a converged solution above F=6. The calculations were then switched 
to Grid III, which were much more stable and for frequencies between 6 and 8, periodic shedding 
of the recirculation vortex was observable in the streamline plots. These streamline contours for 
each phase of the cycle became much different from those of the low frequency flows. As an 
example, Figure 15 shows the streamline contours for various phases for a frequency F=8 
(F* = 0.056) which is close to the reported experimental critical value of F* =0.07. 

One possible interpretation of these Figures is as follows: as time progresses over one cycle, 
the main recirculation vortex first moves downstream, elongating the recirculation region, then 
the main recirculation moves upstream, leaving a separate vortex adjacent to the wall which 
finally breaks off and moves downstream out of the main flow region. Perhaps this is the 
numerical equivalent of the experimental vortex shedding discussed qualitatively10. These results 
must be considered preliminary at this time, since many questions have yet to be investigated, 
such as grid refinement, downstream boundary conditions (the present ones are consistent with 
a smooth outflow, not a vortex leaving the computation region), and so on. As the frequency 
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was increased still further, the calculations became very unstable. The first observed symptom 
was that the turbulent viscosity would not converge, even though the velocity-pressure 
calculations did converge for constant viscosity distributions. This was probably due to the 
unstable property of the flow near the critical frequency (F*=0.07). 

Converged results were actually obtained with Grid III at frequencies above this critical value, 
but the results were very oscillatory in space and appeared to be non-physical. This was 
interpreted as indicative of insufficient grid refinement. 

Some particular numerical results for the time dependent reattachment position are given in 
Table 2. The Table shows the minimum and maximum positions of this point and the associated 
phase angles for their occurrence as well as the position for the mean flow component as obtained 
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Table 2 Numerical results for unsteady reattachment position and phase angle 

Frequency Grid III Grid II 

F(Hz) 

0.5 
1.0 
2.0 
4.0 
6.0 
8.0 
10.0 

F* 

0.0035 
0.007 
0.014 
0.028 
0.042 
0.056 
0.07 

4.90 
4.84 
4.72 
4.10 
4.11 
4.51 
4.39 

(deg) 

310 
336 

4 
34 
80 

158 
214 

6.66 
6.97 
7.33 
6.82 
6.53 
6.63 
7.45 

(deg) 

172 
210 
258 
344 

66 
116 
186 

5.36 
5.39 
5.37 
5.32 
5.22 
4.99 
4.92 

6.33 
6.13 
6.13 
5.70 
5.08 
— 
— 

from Grid III. The corresponding mean flow results as obtained from Grid II are also shown 
for comparison. According to the former results, the mean flow position is essentially independent 
of frequency, at least up to F=6. The fact that the corresponding Grid II results show more 
frequency dependency is probably due to the grid design. On the other hand, the results for the 
minimum and maximum position do exhibit a frequency dependence, namely, that the size of 
the excursions from the mean increase with frequency and the phase angles also increase with 
frequency. It appears that these minimum and maximum positions occur later in the cycle as 
the frequency increases. This is analogous to the behaviour of a damped oscillator for frequencies 
below resonance. The results for the higher frequencies (F=8 and 10) are subject to interpretation, 
in that they were obtained from only the most upstream part of the recirculating flow (see e.g. 
Figure 15). 
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CONCLUSIONS 
The main thrust of this work was to test the potential of using a periodic solution technique 
along with an algebraic closure model to simulate turbulent flows with substantial separated-
reattaching flow regions. The example of flow over a backward-facing step was chosen as the 
test case because of its popularity and the availability of comparison results. 

The results obtained for the steady flow case compared well with other results, thereby 
providing credibility to the modified Baldwin-Lomax algebraic closure model's capability of 
representing separated-reattaching flows. 

The results for the oscillating flow case appeared to have many of the correct physical features. 
For example, for low relative amplitudes of the oscillating component and low frequencies, the 
mean component of the flow was very similar to that of the steady flow case. Further, the 
reattachment point was observed to oscillate about a mean position just as reported in the 
experiment. No vortex shedding was detectable in the numerical results at low frequency, but 
as the frequency was increased towards the critical value reported in the experiment, the nature 
of the numerical results did change and the instantaneous streamlines began to exhibit a 
phenomenon which could be interpreted as 'vortex shedding'. Further, the stability of the 
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calculations deteriorated significantly as well. The stability of the calculations improved again 
for frequencies above the critical one but the accuracy of the results was suspect. 

In conclusion, we can say that the modified Baldwin-Lomax eddy viscosity model seems to 
be appropriate for the type of separated flow configuration considered in the present work. The 
method of averaging appears to work well to obtain periodic solutions of time-dependent flows 
and results in significant savings over time integration methods. In the present work, the turbulent 
viscosity was held constant and depended only on the mean component of the flow. It would 
be interesting to speculate on the possibility of including a periodic component of the viscosity 
which presumably would be dependent on the periodic components of the flow. The present 
results have to be considered preliminary, but even so are sufficient to show the potential of the 
present approach and that it is worthy of further investigation. 

The present periodic solution approach should be more cost effective than time integration 
even though the procedure does require the solution of about three times more variables. 
Unfortunately at this time there is no direct way to compare the two without direct simulation 
of both approaches. 
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APPENDIX 
Details of matrices in (4) and (7) 

d = [u1u2... u8v1v2... v8p1p2p3p4]T 

A = [Au
1Au

2... Au
8Av

1Av
2... Av

8Ap
1Ap

3Ap
4]T 

B = [Bu
1Bu

2... Bu
8Bv

1Bv
2... Bv

8Bp
1BP

2Bp
3Bp

4]T 

C = [Cu
1Cu

2... Cu
8Cv

1Cv
2... Cv

8Cp
1Cp

2Cp
3Cp

4]T 
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where 

where 

where 


